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Abstract
The intensity of the overlap of a quantum state with all its phase space
translations defines its quantum correlations. In the case of pure states, these are
invariant with respect to Fourier transformation. The overlaps themselves are
here studied in terms of the Wigner function and its Fourier transform, i.e., the
characteristic function or chord function. Unlike the Wigner function, the chord
function need not be real, but eventual symmetry with respect to reflections
about a phase space point may relate these representations. Semiclassical
approximations for the ‘classical-like’ region of small chords and for large
chords are derived. These lead to an interpretation of the Fourier invariance in
terms of conjugate chords. The interrelation of large and small (sub-Planck)
phase space structures previously noted in the literature is thus reinterpreted.

PACS numbers: 03.65.−w, 03.65.Sq, 03.65.Yz, 05.45.Mt

1. Introduction

Phase space correlations in quantum states have quite different properties from correlations in
classical distribution functions. At the quantum level, the uncertainty principle imposes, on
one hand, limitations on the possible distribution functions and at the same time creates strong
relations between small and large scales that result in peculiar properties. Thus, for example,
it has been realized [1] that the phase space area A over which a pure state extends determines
the minimal size of the high frequency oscillation structures δA in the Wigner function by a
kind of complementarity relationship,

AδA � (2πh̄)2 (1)

(for one degree of freedom), thus characterizing these structures as ‘sub-Planck’. This
relationship between possibly macroscopic areas A and sub-Planck areas δA is entirely due
to the finiteness of Planck’s quantum of action and is not present when considering the
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correlations of classical distribution functions. In general, and especially for systems with
more than one degree of freedom, we shall show that it is more revealing to relate a given
large displacement to a specific small scale oscillation, rather than to relate areas.

This complementarity between small and large scales in quantum distribution functions
can be accessed by the Wigner function and its Fourier transform. Moreover, the latter,
sometimes referred to as the characteristic function, the generating function, or simply the
chord function, also lies at the core of a full representation of quantum mechanics, on a par
with the Weyl–Wigner representation itself. Further considerations about the corresponding
conjugate classical phase spaces as well as the notation are found in appendix A. In this paper
we compare the way that both these representations exhibit quantum coherences on all scales,
that are overlaid on purely classical structures. The copious previous literature on the Wigner
functions allows us to concentrate on the properties of the chord representation.

In section 2 we present the intrinsic definition of phase space correlations for a general
density operator ρ̂ to be studied. These are then related to the chord function and the Wigner
function in section 3. Then in section 4, we exploit the general interrelation of these functions
in the case of pure states and present some simple examples. Section 5 is dedicated to the
theory of small chords. This is the classical region, corresponding to a caustic of the Wigner
function. The simple approximation thus obtained is rederived in the next section within the
full semiclassical theory valid for large chords. Squaring the semiclassical chord function
in section 7, we interpret the invariance of the correlations of a pure state with respect to
the Fourier transform. This results from a geometrical conjugacy of chords defined on the
classical phase space structures. Thus the complementarity of large and small chords arises
as a limit among finite conjugate chords. The discussion in the last section recapitulates the
full picture for extended pure states including ‘ergodic states’ of chaotic Hamiltonians.

2. Phase space correlations

The correlation between two states of a quantum system, represented by their density operators,
ρ̂A and ρ̂B , can be given an intrinsic definition as

CAB ≡ tr ρ̂Aρ̂B√
tr ρ̂2

A tr ρ̂2
B

. (2)

By the Schwartz inequality this quantity is always less than unity and for pure states,
ρ̂ = |ψ〉〈ψ |, it reduces to CAB = |〈ψA|ψB〉|2. When the pair of states is obtained by the
unitary evolution of slightly different Hamiltonians from the same initial state, the behaviour
in time of CAB reflects the regular or chaotic nature of the underlying classical motion [2–4].
If the states are related by a unitary transformation generated by an Hermitian operator K̂ ,

ρ̂α = e−iαK̂/h̄ρ̂ eiαK̂/h̄, (3)

with α a real parameter, the small-α behaviour of the correlation is easy to ascertain:

C(α) ≡ tr ρ̂ e−iαK̂/h̄ρ̂ eiαK̂/h̄

tr ρ̂2
≈ 1 − α2

h̄2

tr[ρ̂2K̂2 − ρ̂K̂ρ̂K̂]

tr ρ̂2
= 1 +

α2

2h̄2

tr[ρ̂, K̂]2

tr ρ̂2
� 1. (4)

If ρ̂ represents a pure state, this quadratic behaviour relates C(α) to the dispersion of the
generator K̂ , i.e., 〈K̂2〉 − 〈K̂〉2 [5].

In what follows we will be concerned with the phase space correlations of
a quantum state produced by unitary translations in the L-dimensional phase space
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(p, q) = (p1, . . . , pL, q1, . . . , qL). Denoting the corresponding quantum operators by (p̂, q̂),
the translation operators read

T̂ξ = exp

[
i

h̄
(ξp · q̂ − ξq · p̂)

]
, (5)

where the vector, or chord, ξ = (ξp, ξq) represents an arbitrary direction in phase space. The
expression

Cξ ≡ tr ρ̂Tξ ρ̂T
†
ξ

tr ρ̂2
= tr ρ̂ρ̂ξ

tr ρ̂2
(6)

is an intrinsic definition of phase space correlation, quite independent of the representation
used to compute it, and should not be confused with, e.g., local wavefunction correlations [6],
which do depend on the specific coordinate representation.

In quantum optics it is customary to switch to the basis of creation and annihilation
operators (q̂ ± ip̂)/

√
2h̄. In this context, the translation operator (5) depends on the complex

chords (ξp ± iξq)/
√

2h̄ and is called the displacement operator [7, 8]. The semiclassical limit
for a complex phase space is not as transparent as the real theory treated here. However it is
quite feasible to effect phase space translations in the optical context [9].

Some of the general formulae in the following sections are related to the theory of Gaussian
noise channels. Indeed, the ‘fidelity’ of a Gaussian channel is just the correlation (6) averaged
with a Gaussian window for the chords ξ [10].

3. The chord function and the Wigner function

The chord symbol for an operator Â is defined as

A(ξ) ≡ tr T̂−ξ Â, (7)

allowing for the complete representation of Â in terms of the unitary translations in phase
space:

Â =
∫

dξ

(2πh̄)L
A(ξ)T̂ξ . (8)

In the case of the density operator ρ̂, it is convenient to alter the normalization, so that

χ(ξ) ≡ 1

(2πh̄)L
tr T̂−ξ ρ̂ (9)

is the definition of the chord function, also known as the characteristic function, or the
generating function. (In classical mechanics the displacement ξ results from a trajectory of
which it is the chord—see appendix A.)

The Fourier transform of the chord symbol is the Weyl symbol A(X),

A(X) =
∫

dξ

(2πh̄)L
e−iX∧ξ/h̄A(ξ), (10)

in terms of the skew product

X ∧ ξ = P · ξq − Q · ξp. (11)

In the case of the density operator, the Fourier transform of (9) is the familiar Wigner function.
But, since the Fourier transform of the translation operator T̂ξ itself corresponds to the classical
reflection through the phase space point X [12],∫

dξ

(2πh̄)L
eiX∧ξ/h̄T̂ ξ = 2LR̂X, (12)
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it follows that [11]

W(X) ≡ 1

(πh̄)L
tr R̂Xρ̂. (13)

Though translations and reflections are quite distinct operators, they combine to form the
affine group in geometry [13], which is transported into quantum mechanics by the operators
R̂X and T̂ξ [12]. The family resemblance is striking when viewed, for instance, from the
position representation:

2LR̂X =
∫

dξq

∣∣∣∣Q +
ξq

2

〉 〈
Q − ξq

2

∣∣∣∣ eiP ·ξq/h̄, (14)

whereas

T̂ξ =
∫

dQ

∣∣∣∣Q +
ξq

2

〉 〈
Q − ξq

2

∣∣∣∣ eiξp ·Q/h̄. (15)

It is well known that the Wigner function cannot be identified with a probability
distribution in phase space, even though this interpretation holds for marginal distributions
and the calculation of averages of observables as phase space integrals. The main problem
is that W(X) can assume negative values and indeed they are present for all pure states that
are not Gaussian (coherent) states. For this reason, it is also improper to refer to χ(ξ) as
a characteristic function, even though its derivatives do generate moments of q̂, p̂, and any
polynomial function in phase space, taking proper care of the operator ordering; for instance,

〈qn〉 = tr q̂nρ̂ = (ih̄)n
∂n

∂ξn
p

χ(ξ)

∣∣∣∣
ξ=0

. (16)

For the case of the identity operator, we obtain the normalization condition:

1 = tr ρ̂ =
∫

dX W(X) = (2πh̄)Lχ(0). (17)

In the case of operators representing observables with smooth, classical-like Wigner functions,
e.g., polynomials in q and p, their corresponding Fourier transforms, i.e., the chord symbols,
are sharply localized (improper functions) close to the origin. On the other hand, the chord
function for a normalized state is a proper function, and extends away from the origin, so as
to represent truly quantum correlations. The process of decoherence, destroying the purity
of the initial state, generically washes away the exterior structure of the chord function and
compacts the mixed state onto the classical origin of chords. This has been shown for linear
Markovian systems [14], and will be the subject of further work. Here we will describe the
large and small scale features of the chord function and their close intertwining.

Combining definition (13) of the Wigner function with the group properties of the
translation and reflection operators [12] it is easy to see that the Wigner function corresponding
to the translated state ρ̂η = T̂ηρ̂T̂−η is

Wη(X) = W(X − η), (18)

whereas the corresponding chord function is just

χη(ξ) = eiη∧ξ/h̄χ(ξ). (19)

Unlike the Wigner function, the chord function is not necessarily real, but it may be real
for a particular choice of phase space origin. It is shown in appendix B that the necessary and
sufficient condition for this is that there exists a symmetry centre X, such that [ρ̂, R̂X] = 0, and
it is chosen as the origin. Since RX has eigenvalues ±1, the pure or mixed state ρ̂ must then
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lie in the Hilbert subspace of either even or odd parity. For these parity-symmetric states, ρ̂±,
the Wigner function and the chord function are obtained from each other by a mere rescaling:

W±(X) = ±2Lχ±(−2X). (20)

For general unsymmetric states, the real part of the chord functions is still determined by
the diagonal part of ρ̂ with respect to parity, whereas the imaginary part depends on the off-
diagonal part. However, it is the intensity of the chord function, |χ(ξ)|2, that turns out to be
most useful.

The intrinsic definition of phase space correlations Cξ in (6) is readily translated into the
properties of Wigner functions and chord functions:

tr ρ̂T̂ξ ρ̂T̂
†
ξ = (2πh̄)L

∫
dX W(X)W(X − ξ) = (2πh̄)L

∫
dη eiη∧ξ/h̄|χ(η)|2. (21)

Thus the correlations of the Wigner function can be identified with Cξ and |χ(η)|2 is just the
power spectrum of W(x).

4. Pure states

It is worthwhile to recollect some examples for which the chord function can be identified with
the Wigner function, once the origin is translated to the symmetry centre. In all the following
cases we consider states of a harmonic oscillator with one degree of freedom and unit mass.

(i) Coherent states, |η〉, are displacements of the ground state of the harmonic oscillator
by T̂η. The Wigner function is just a Gaussian centred on η,

Wη(X) = 1

πh̄
exp

[
−ω

h̄
(Q − ηq)

2 − 1

h̄ω
(P − ηp)2

]
ω=1−→ 1

πh̄
e−(X−η)2/h̄, (22)

whereas, using (18) and (19),

χη(ξ) = 1

2πh̄
exp

(
iη ∧ ξ

h̄

)
exp

[
−ω

h̄

(
ξq

2

)2

− 1

h̄ω

(
ξp

2

)2
]

ω=1−→ 1

2πh̄
eiη∧ξ/h̄ e−ξ 2/4h̄. (23)

So, any translation of the coherent state merely alters the phase of the Gaussian chord function
that sits on the origin.

(ii) A superposition of a pair of coherent states, |η〉 ± |−η〉, is sometimes known as a
‘Schrödinger cat state’. Its Wigner function is (here and below we set ω = 1)

W±(X) = 1

2πh̄(1 ± e−η2/h̄)

[
e−(X−η)2/h̄ + e−(X+η)2/h̄ ± 2e−X2/h̄ cos

2

h̄
X ∧ η

]
. (24)

It consists of two ‘classical’ Gaussians centred on ±η and an interference pattern with a
Gaussian envelope centred on their midpoint. The frequency of this oscillation increases with
the separation |2η|. For the chord function,

χ±(ξ) = 1

4πh̄(1 ± e−η2/h̄)

[
e−(ξ/2−η)2/h̄ + e−(ξ/2+η)2/h̄ ± 2e−ξ 2/4h̄ cos

1

h̄
ξ ∧ η

]
, (25)

this same configuration has to be reinterpreted. Now the internal correlations of the individual
coherent states are both superimposed onto the neighbourhood of the origin, as in (i), while
their cross-correlation generates new Gaussians centred on the separation vectors ±2η. Of
course, the general case of coherent states |η1〉 and |η2〉 merely leads to Gaussians centred on
±(η1 − η2) with addition of the phase factor exp[i(η1 + η2) ∧ ξ/2h̄].
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(iii) Fock states, |n〉, i.e., the excited states of the harmonic oscillator, also have reflection
symmetry with respect to the origin. Thus, from the exact Wigner function, first derived by
Grönewold [15],

Wn(X) = (−1)n

πh̄
e−X2/h̄Ln

(
2X2

h̄

)
, (26)

where Ln is a Laguerre polynomial, and (20) we obtain the chord function

χn(ξ) = e−ξ 2/4h̄

2πh̄
Ln

(
ξ 2

2h̄

)
. (27)

It is interesting to note that the symmetry centre, which produces the maximum amplitude of
the Wigner function, is nowhere near the classical manifold with energy En = (

n + 1
2

)
h̄ω.

However, this point lies in a region of narrow oscillations, so that it does not affect the average
of smooth observables.

All the above examples are singled out by some point of reflection symmetry, which must
always be chosen as the origin for the chord function to be real. The chord function always
assumes its maximum value 1/(2πh̄)L at the origin, whatever the symmetry. For a pure state
the proof is immediate because

〈ψ |ψξ 〉 = (2πh̄)Lχ(−ξ), (28)

which cannot have modulus greater than one, whatever the symmetry. But even an average
of overlaps cannot exceed one, so χ(0) is also the maximum for mixed states. The Wigner
intensity [W(X)]2 need not have such a prominent peak in general. However we shall see
in section 6 that the large scale features of the semiclassical forms of the Wigner function
and the chord function maintain a mutual correspondence, even in the absence of a reflection
symmetry.

General invariance with respect to Fourier transformation does hold for the correlation in
the case of pure states. Indeed, combining (28) with (21) we obtain

(2πh̄)2LCξ = |χ(ξ)|2 =
∫

dη

(2πh̄)L
eiη∧ξ/h̄|χ(η)|2. (29)

This is a remarkable property of all pure states and is in no way restricted by special symmetry
properties that relate certain Wigner functions to their respective chord functions. All the
same, we can start by considering the example of the chord functions so far studied: (i) in
the case of a single Gaussian (22) the invariance is obvious, because the square modulus is a
Gaussian with the appropriate width for its Fourier transform to be of the same form. (ii) For
a pair of coherent states, the chord function is a sum of Gaussians. Its square modulus is also
Gaussian and we again return to the same function by Fourier transformation. (iii) For Fock
states this is not so obvious, but we can also write |χ(ξ)|2 as

|χ(ξ)|2 =
∑

k

ak

∂k

∂λk
e−λξ 2/2h̄

∣∣∣∣
λ=1

, (30)

with coefficients ak that do not depend on ξ . So, the invariance of the ground state Gaussian
entails that of all Fock states.

The Fourier invariance condition (29) includes as a special case the more familiar tracing
over the full pure state condition ρ̂2 = ρ̂. It can be easily checked that setting ξ = 0 in (29)
gives the chord representation of the identity tr ρ̂2 = tr ρ. It follows that the difference of both
sides of (29) for each chord ξ is a measure of the purity that generalizes the linear entropy.
However, the loss of the phase information contained in the chord function, but absent in
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|χ(ξ)|, implies that these are necessary conditions, whereas the full sufficient condition of
purity is only ρ̂2 = ρ̂, which is expressed in the chord representation as∫

dη χ(η)χ(ξ − η) eiξ∧η/2h̄ =
∫

dη χξ/2(η)χ(ξ − η) = χ(ξ), (31)

with χξ/2(η) defined by (19).

5. Small chords

We now consider the chord function and the correlation function of semiclassical states, i.e.,
those related to generalized Bohr–Sommerfeld energy levels. This section focuses on the limit
of small chords.

Starting from the Wigner–Weyl representation we may rewrite

χ(ξ) = 1

(2πh̄)L
〈T̂−ξ 〉 = 1

(2πh̄)L

∫
dX T−ξ (X)W(X). (32)

Besides the Wigner function, we have here introduced the Weyl symbol for the translation
operator:

2Ltr T̂−ξ R̂X ≡ T−ξ (X) = e−iξ∧X/h̄. (33)

If ξ is small enough, i.e., |ξ | � h̄, then Tξ (X) behaves like a smooth, classical-like symbol. It
still oscillates, but with a classical wavelength. In such a case, to a good approximation, we
can replace the Wigner function in (32) by the simplest semiclassical expression [16]

WI(X) � 1

(2π)L
δ(I (X) − I). (34)

Here I (X) is the set of L action variables for an integrable system with L degrees of freedom
and I is the set of quantized action values for this particular state [16, 19]. Within this
approximation, the average of a quantum observable Â is just a purely classical average over
a torus:

〈Â〉 �
∫

dX A(X)
δ (I (X) − I)

(2π)L
=

∫
dθ

(2π)L
A(θ), (35)

where θ are the angle variables conjugate to the actions, which describe positions on the
quantized torus, and A(θ) = A(X(θ)). In the case of the representation for the chord function
(32), we obtain

χ(ξ) � 1

(2πh̄)L

∫
dθ

(2π)L
e−iξ∧X(θ)/h̄. (36)

Certainly, a bad choice of origin will lead to large phases in (36), but we have already studied
the trivial phase change due to translating the origin. Thus, we can increase the quality of (36)
by choosing the origin to minimize |X(θ)| on average.

Let us check the semiclassical approximation (36) for the simplest case of the Fock states,
discussed in the previous section. Choosing ω = 1, we have action-angle variables that are
merely canonical polar coordinates

q =
√

2I cos θ, p =
√

2I sin θ. (37)

Thus, choosing ξ along the p-axis, without loss of generality, we obtain

χ(ξ) � 1

2πh̄

∫
dθ

2π
e−i

√
2I|ξ | cos θ/h̄ = 1

2πh̄
J0

(√
2I|ξ |
h̄

)
, (38)
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where J0 is a Bessel function. This result should be a good approximation to the exact
formula (27) for |ξ | � h̄ and large n = I/h̄−1/2. To check this, first note that χ(ξ) oscillates
with a wavelength λ ∼ h̄/

√
I. In terms of this scale, and defining z = |ξ |/λ, the argument of

the Laguerre polynomial in (27) reads

ξ 2

2h̄
= z2

2n
. (39)

Hence, for z2 
 n, we recover (38) by using the formula [17]

lim
n→∞ Ln

(
z2

2n

)
= J0(

√
2z). (40)

In the next section we shall study the semiclassical limit of the chord function for large
chords and show that in the particular case of the harmonic oscillator this coincides with the
expansion of (38) for large argument:

J0(y) ≈ 2√
πy

cos
(
y − π

4

)
. (41)

6. Semiclassical theory

The easiest path to obtain the semiclassical form of the chord function for finite chords is to
start from the general WKB wavefunctions. The underlying classical structure is assumed to
be a curve (for L = 1) or a Lagrangian surface (L > 1) defined by the actions I. Fixing the
action, such structure can be described locally as a function p = p(q, I )) which may have
several branches. Thus we define

S(q, I ) =
∫ q

q0

p(q ′, I ) dq ′, (42)

which is the generating function for the transformation (p, q) → (I, θ), such that

∂S

∂I
= θ,

∂S

∂q
= p. (43)

Then the corresponding WKB wavefunctions are linear combinations of

〈q|ψI 〉 = c

∣∣∣∣det
∂2S(q, I )

∂q∂I

∣∣∣∣
1/2

eiS(q,I )/h̄, (44)

for the various branches of S(q, I ), with c a normalization constant [18, 19].
The similarity between equations (14) and (15) for the operators that determine the chord

function and the Wigner function, allows us to follow the same steps as Berry [16] for the
semiclassical Wigner function. Thus we presume that

χ(ξ) = c2

(2πh̄)L

∫
dQ′ exp

{
1

h̄

[
S

(
Q′ +

ξq

2
, I

)
− S

(
Q′ − ξq

2
, I

)
− ξpQ′

]}

×
∣∣∣∣det

∂2S(Q′ + ξq/2, I )

∂q∂I
det

∂2S(Q′ − ξq/2, I )

∂q∂I

∣∣∣∣
1/2

(45)

has a stationary point within a single of branch of S(q, I ). The stationary phase condition
for Q′ = Q

pI

(
Q +

ξq

2

)
− pI

(
Q − ξq

2

)
= ξp (46)
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(a) (b) (c)

Figure 1. The stationary phase condition for the semiclassical chord function χ(ξ) is just that ξ

be a geometrical chord for the curve I (x) = I, locally given by pI (q). The stationary phase itself
is given by the shaded area in (a). The constructions in (b) and (c) are invariant with respect to
linear transformations and have the same areas.

specifies that the geometrical chord corresponding to the arc of pI(q) = p(q, I = I), lying
between q = Q − ξq/2 and q = Q + ξq/2, coincides with the given chord ξ .

Unlike the Wigner function, the phase of the chord function depends on the choice of
phase space origin, but this phase is trivially specified by the overall phase factor (19) for
a translation by a vector η. Thus, let us for now assume that the origin is translated to
(0,Q). Then the stationary phase action is just the area shown in figure 1(a). The alternative
constructions (b) and (c), also shown in figure 1, have the same area and enjoy the advantage
that they survive arbitrary linear canonical transformations which preserve the origin. In other
words, we may always consider the phase for the semiclassical chord functions to be defined
by a sum of areas: (i) the area sandwiched between the chord and the arc into which if fits,
S(X, I). This is just the same as for the semiclassical Wigner function, except that there the
construction starts from the centre of the chord X (figure 1(b)), rather than from the chord
itself. (ii) The area that is added to this may be taken as that of the parallelogram obtained
by transporting the centre of ξ to the origin (figure 1(b)), or the polygonal figure of eight
constructed by the chord and its reflection around the origin (figure 1(c)). In either case the
value of the area is just X ∧ ξ . Therefore we construct the chord generating function

S(ξ, I ) = S(X, I) − X ∧ ξ, (47)

which is just the Legendre transformation of the centre action, appropriate to the Wigner
function, as discussed in appendix A. This geometry is immediately generalized for L > 1:
the action for any polygonal figure is just the algebraic sum of the areas of its projections on
each conjugate plane. Furthermore, it does not matter which arc is chosen between the tips of
ξ along pI(q) because this is a Lagrangian surface.

Thus, the contribution of each realization of the chord ξ , with centres Xj and closing arcs
γj on the quantized curve or Lagrange manifold I (x) = I, has the form

χj (ξ) = Aj(ξ) exp

[
i

h̄
Sj (ξ) − σj

π

4

]
. (48)

Here σj is the signature of the matrix

∂2

∂Q2
[S(q+, I ) − S(q−, I )] , (49)

where q± = Q ± ξ/2, so that in the case of the curve in figure 1 we have σ = +1.
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X

+x

+x.
–x

–x.

ξ

Figure 2. The semiclassical chord function, χ(ξ), is determined by the geometrical chord ξ ,
centred on X, and joining the points x− and x+ on the quantized classical curve. The amplitude
depends on both phase space velocities at the tips, as explained in the text.

The amplitude for each realization of the chord, within a normalization factor, is given by

|Aj(ξ)|2 =
∣∣∣∣det

[
∂pI

∂q
(q+) − ∂pI

∂q
(q−)

]
det

∂I

∂p
(p(q+), q+) det

∂I

∂p
(p(q−), q−)

∣∣∣∣
=

∣∣∣∣det

[
∂I

∂p

∣∣∣∣
+

∂I

∂q

∣∣∣∣
−

− ∂I

∂p

∣∣∣∣
+

∂I

∂q

∣∣∣∣
−

]∣∣∣∣ , (50)

because
dI

dq
(p(q), q) = ∂I

∂q
+

∂I

∂p

∂p

∂q
= 0, (51)

along the classical surface. These amplitudes coincide with those of the Wigner function
evaluated at the point Xj(ξ). In the case where L = 1, the 1 × 1 determinant is only a single
factor. Taking I (x) to be a Hamiltonian, the corresponding phase space velocity tangent to
the phase space curve is

ẋI = J
∂I

∂x
, (52)

where J is the symplectic matrix (A.4), and we may interpret the amplitude of the chord
function as

|Aj(ξ)|−2 = (ẋI )+ ∧ (ẋI )− = {I+, I−} , (53)

where the displaced actions are defined by

I±(X) = I

(
X ± ξ

2

)
(54)

(see figure 2). In the general case each element of the determinant is such a Poisson bracket
for the different L action variables [20].

For a maximal chord, termed a diameter, such that ẋ− becomes parallel to ẋ+, the amplitude
diverges to generate a caustic of the chord function. Beyond this boundary χ(ξ) becomes
negligible. In the limit of small chords, ẋ± are almost parallel, and the amplitude may be
arbitrarily large. In this region the above semiclassical theory ceases to operate and, because
the chord normalization condition is precisely χ(0) = 1/2πh̄, we have neglected to define the
overall normalization factor. Actually this limit around the origin is much nastier than normal
semiclassical caustics, since the entire classical manifold can be defined by a succession of
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infinitesimal chords. It is thus a nontrivial problem to construct a semiclassical uniform theory
including large and small chords.

However, it is possible to connect the semiclassical theory to that for the small chords of
the previous section. Let us take the case that the given chord, ξ , is parallel to the q-axis, so
that we can rewrite (45) as

χ(ξ) = c2

(2πh̄)L

∫
dQ exp

{
i

h̄

[
S

(
Q +

ξq

2
, I

)
− S

(
Q − ξq

2
, I

) ]}

×
∣∣∣∣det

∂θ

∂Q

∣∣∣∣
1/2

+

∣∣∣∣det
∂θ

∂Q

∣∣∣∣
1/2

−
, (55)

using (43). Expanding

θ(q±) = θ(Q) ± ∂θ

∂Q

ξ

2
+ · · · , (56)

we obtain ∣∣∣∣det
∂θ

∂Q

∣∣∣∣
1/2

−

∣∣∣∣det
∂θ

∂Q

∣∣∣∣
1/2

+

=
∣∣∣∣det

∂θ

∂Q

∣∣∣∣ [1 + O(ξ 2)
]

(57)

whereas

S

(
Q +

ξq

2
, I

)
− S

(
Q − ξq

2
, I

)
= pI (Q)ξq + O

(
ξ 3
q

)
. (58)

Hence, we can cancel the amplitudes in (55) by changing the integration variable, Q → θ :

χ(ξ) � 1

(2πh̄)L

∫ 2π

0

dθ

2π
eiX(θ)∧ξ/h̄. (59)

The general form of (59) holds for any choice of origin and direction of the small chord ξ .
We have here rederived the small chord expression for the chord function used in the last

section in a way that has several advantages. First we note that Berry’s original derivation
of the δ-function approximation for the Wigner function also linearized the action for small
chords [16]. But here the chord is indeed fixed and can be assumed to be small, whereas there
the integral is over all chords. We should note that (34), or the extension of (59) for all chords,
is tantamount to approximating

ρ̂ ≈ 2L

∫ 2π

0

dθ

(2π)L
R̂X(θ). (60)

We can now evaluate the error in (59) when the chord ξ is large enough for both this
integral and (45) to be evaluated by stationary phase. Consider the convex curve I (x) = I in
figure 3(a). The difference in the phases for the stationary phase evaluation at each stationary
point of (59) or the full integral (45) is the part of the area near the corner of the circumscribed
parallelogram with two sides ξ tangent to the curve, lying outside the curve. If we approximate
the curve as a parabola around the point of tangency δp = a(δq)2, the leftover area is just
A(ξ) = 2a|ξ |3/3. So, if the diameter between the parallel tangents with the direction ξ is
ζ(ξ), the true stationary area for each realization of the chord is just

S(ξ) = 1

2
ζ ∧ ξ − 2a|ξ |3

3
. (61)

Thus the stationary phase evaluation of the full integral is valid as long as |ζ ∧ ξ | > h̄,
whereas the integral (59) can be used if a|ξ |3 < h̄. Therefore the range of overlap for both
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(a) (b)

Figure 3. (a) The difference in the pair of stationary phases for (59) is proportional to the
parallelogram that has ξ as one of its sides and is doubly tangent to the quantized curve. The
difference between this area and the pair of stationary areas in the full semiclassical formula is just
the shaded area at the corners. (b) A pair of stationary phase realizations in a convex quantized
curve for a finite chord ξ defines an inscribed parallelogram. The other side is the conjugate
chord η. The sign of the conjugate chords plays no role in the equations for |χ(ξ)|2 because
χ(ξ)∗ = χ(−ξ).

approximations is

h̄

|ζ | � |ξ | �
(

h̄

a

)1/3

, (62)

so that we can always make the transition between both approximations as h̄ → 0.

7. Conjugate chords

The pair of parallel tangents shown in figure 3(a) can be defined as the realizations of an
infinitesimal chord for the curve I (x) = I. The points where the tangents touch this curve
are joined by the diameter ζ . In the case of a finite chord ξ , we can also define the conjugate
chord, η, as that which closes off the inscribed parallelogram with the sides ξ , as shown in
figure 3(b). Clearly, the area of this parallelogram is ξ ∧ η, which is smaller than ξ ∧ ζ , used
in the previous section. Choosing the origin at the centre of this parallelogram, we obtain the
phase of each contribution to χ(ξ) as ξ ∧ η/2, added to each of the chord areas for ξ .

Increasing the length of ξ while keeping its direction constant, the pair of realizations
eventually coalesce along a diameter of the closed curve. Thus we obtain in this limit an
interchange in the role of the ‘conjugate chords’ ξ and η. Now it is the small chord η that
determines the phase of the contribution as the chord ξ approaches the caustic of χ(ξ) at its
diameter.

It is not only in the geometry of the curve that the conjugate chords ξ and η interact.
Indeed, the phase difference between both realizations of the chord ξ coincides with the sum
of the chord areas for the realizations of the chord η. To see this, note that this phase difference
is just the shaded area in figure 4(a) divided by Planck’s constant. But, because this curve is
quantized (its enclosed area is an integer factor of 2πh̄, plus a Maslov correction), the phase
difference for ξ is the same as for the unshaded area. Note now that the phase difference can
also be obtained by translating the whole quantized curve by the chord ξ and measuring the
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(a) (b) (c)

Figure 4. The phase difference for the pair of realizations of the chord ξ is the shaded area in
(a) divided by h̄. The quantization of the curve equates this phase (modulo 2π ) to the phase for
the shaded area in (b), obtained by the overlap of the curve with its translation by ξ . Adding to this
the area of the inscribed parallelogram, we obtain the phase difference for the pair of realizations
of the chord η in (c).

overlap. This is just the classical correspondence for the definition of χ(ξ) of a pure state in
(28). If the classical quantized curves all have a symmetry centre, it makes no difference
whether or not the curve is reflected about its centre prior to translation. In this way we
obtain a semiclassical version of the trivial relation between the Wigner function and the
chord function in the case of centre-symmetrical systems. The overlap between the quantized
curves, or quantized tori, was already employed to study the semiclassical approximation to
the Wigner function [20].

Both the Wigner functions and the chord function can be considered as special cases
of the overlap of two semiclassical states |ψ〉 and |φ〉, corresponding to classical curves, or
Lagrangian surfaces. In the case of the Wigner function |φ〉 = R̂X|ψ〉, whereas, for the chord
function |φ〉 = T̂ξ |ψ〉. In the general formalism of Littlejohn [21], each intersection of the
manifolds corresponding to |ψ〉 and |φ〉 determines a semiclassical contribution. The phase
difference between these contributions is determinated by the overlap area, just as in figure 4(b),
within a Maslov correction. The amplitude of each semiclassical term is then given by
Poisson brackets between both manifolds at the intersections. Obviously, in the present case,
this coincides with the Poisson brackets for the same manifold at either tip of the chord, as
obtained in (53). Perharps this general point of view provides the more pleasing explanation
for the identical form of the Wigner and the chord amplitudes.

The relation between conjugate chords, ξ and η, and the corresponding evaluations of the
semiclassical chord function for the same state |ψ〉, i.e., χψ(ξ) and χψ(η), is mediated by the
parallelogram formed by ξ and η. The phase difference �S(ξ), in units of h̄, between both
contributions to χψ(ξ) can be pictured as either the shaded area in figure 4(a), or the unshaded
area corresponding to both realizations of the chord η. But, if we now add ξ ∧ η to these
unshaded areas, we obtain the new shaded area �S(η) in figure 4(c), which determines the
phase difference of both contributions to χψ(η).

Squaring the semiclassical approximation for χ(η) we obtain

(2πh̄)2Cη = |χ(η)|2 � {I+, I−}−1
1 + {I+, I−}−1

2 + {I+, I−}−
1
2

1 {I+, I−}−
1
2

2 cos
�S(η)

h̄
(63)

in the simple case where I (x) = I is a convex curve, so that there is a pair of realizations
for the chord, η, with intensities given by (53). Inserting (63) into the Fourier integral (29),
we find that the first two smooth terms only contribute to the classical neighbourhood of the
origin. It turns out that the stationary condition for η in (29) for a given value of ξ in the
last term is precisely that η be the conjugate chord to ξ , i.e., that ξ and η form an inscribed
parallelogram in the curve corresponding to |ψ〉. This is a consequence of equation (46).
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Therefore the Fourier invariance of the quantum correlation results semiclassically from the
relation of the chord function χ(ξ) ↔ χ(η), for conjugate chords.

In the limit as the family of chords with a fixed direction approaches its maximum value
for a given quantized curve, i.e., a diameter, the conjugate chord approaches the origin in
the direction of the parallel tangents at the tips of the diameter. However, in this region, the
simple semiclassical amplitudes Aj given by (53) become singular and each of the three terms
in (63) contributes. It is here necessary to replace the semiclassical contribution by uniform
approximations in terms of Airy functions. This will be the subject of further work.

The role of diameters as conjugate chords near the origin is brought forth by combining
(29) with (36), for |ξ | → 0:

Cξ ≈
∫

dθ+

(2π)L

dθ−
(2π)L

eiξ∧[x(θ+)−x(θ−)]/h̄. (64)

We can interpret x(θ+) − x(θ−) as the set of chords supported by the quantized curve, or
L-dimensional torus. This confirms the role of the first two terms of (63) which contribute
to the Fourier transform of Cξ for small ξ : all the chords supported by the curve contribute.
However, as soon as ξ grows in modulus enough that we may evaluate (64) by stationary phase
(condition (62)), the dominant contribution comes from the diameter ζ(ξ), i.e., ζ = x(θ+) −
x(θ−), such that

dx

dθ+
= dx

dθ−
= 0; (65)

in other words, the tangents at θ± are parallel.
Up to now we have analysed cases where the classical structure is a continuous curve or

surface in phase space. Let us now consider an alternative classical setting, a state

|ψ〉 =
∑

j

aj |ηj 〉, (66)

where |ηj 〉 are coherent states centred on the phase space points ηj . Then the density operator
is

|ψ〉〈ψ | =
∑

j

|aj |2|ηj 〉〈ηj | +
∑
j �=k

aja
∗
k |ηj 〉〈ηk|, (67)

and its chord representation χψ(ξ) is a simple generalization of (24): each chord ±(ηj − ηk)

is the centre of a Gaussian, whereas the diagonal terms in (67) interfere collectively in the
neighbourhood of the origin. Taking |χψ(ξ)|2, we again have Gaussians centred at ηj −ηk and
at the origin. It is easy to see that the Fourier transform merely interchanges the contributions
to the origin with the pair of Gaussians centred at ±(ηj − ηk). However, there is a new
contribution to the Fourier transform if the four vectors η1, η2, η3, η4 form a parallelogram,
i.e., η2 − η1 � η3 − η4 and consequently η3 − η2 � η4 − η1, where � means that the
vectors differ by O(

√
h̄). Then the Fourier transform of |χ(ξ)|2 for ξ = η1 − η4 receives

contributions from the neighbourhood of η2 −η1 and vice versa. Thus, again we verify the role
of conjugate chords in the Fourier invariance of the quantum correlations. The consistency
of fitting semiclassical states with Gaussian coherent states has been recently investigated
in [22].

8. Discussion: resurgence of pure state correlations

We recapitulate our findings: as we displace a pure state that is classically extended, i.e. that
quantizes with a large quantum number, the correlation in a given direction goes through
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four different stages: (a) an initial, relatively simple stage of very short chords in which the
behaviour is quadratic in the displacement and determined purely by the phase space extent of
the state. This is the region that has received most attention in the literature so far [1, 5, 23].
(b) A second oscillatory stage ruled by the points of intersection of the two displaced tori, with
relative phases that are semiclassically determined. (c) A third stage characterized by a chord
caustic where the semiclassical contributions diverge and where uniform approximations are
still needed. (d) An asymptotic region where the correlation decays uniformly to zero. We
have here given special attention to the transitions between stages (a) and (b). Other large
systems such as a widespread superposition of coherent states will also have large classical
values for 〈p2〉 or 〈q2〉. For all such pure states the initial decay of the correlations with
growing displacement will be followed by their oscillatory resurgence for those chords that
cause the underlying classical structures to overlap.

It is important to consider higher phase space dimensions, since all our examples were
restricted to a single degree of freedom. Again, it is clear that in the case of arbitrary
superpositions of pairs of coherent states the straight Fourier analysis of the Wigner function
leads to very similar pictures for the pair of classical-like Gaussians in the Wigner function
and the peaks of correlations at the chords that separate them.

Integrable systems of higher dimension might appear to be harder to analyse, but this is not
so. It was shown in [20] that the Wigner function corresponding to L-dimensional quantized
tori is characterized by a Wigner caustic of dimension 2L − 1 in which the torus appears as a
higher singularity. At this boundary between an oscillatory inner region of phase space and
the evanescent region outside, the Wigner function attains an amplitude maximum, which can
be described locally by an Airy function and its derivative. In the case that there exists a
reflection symmetry centre, the chord function must be identical to the Wigner function within
a phase and the rescaling (20). Even without such a reflection symmetry, the region where a
finite L-torus and its rigid translation intersect is bounded by a (2L − 1)-dimensional surface
at which they touch nontransversally—the chord caustic.

Finally we must consider the case of an eigenstate of a chaotic Hamiltonian. In this case
Shnirelman’s theorem [24] guarantees that most states are ergodic in the sense that the average
of smooth functions of the observables p̂ and q̂ is given by a classical average over the energy
shell. In its simplest form, quantum ergodicity may be taken as the Berry–Voros hypothesis
that the Wigner function is approximately a Dirac delta function on the energy shell [6, 25]. It
follows immediately that for small chords we may adapt the discussion in section 5 to obtain
the chord function for the nth energy eigenstate as

χn(ξ) = 〈eiξ∧x̂〉n = 1

(2πh̄)L

∫
dx δ(H(x) − En) eiξ∧x/h̄∫

dx δ(H(x) − En)
(68)

(see also [5, 23]). Conjugate to this short chord behaviour there must be appreciable large
arguments for which χn(ξ) is also large, corresponding to the largest chord fitting between
a pair of points in the energy shell for any given phase space direction. Once again, in the
case of a reflection symmetric chaotic Hamiltonian, we may invoke the (scaled) identity with
the Wigner function which is dominated by the energy shell itself, according to Shnirelman’s
theorem [24].

In all the extensions to higher dimensions, large chords ξ generate oscillations in the
Wigner function with wave vector Jξ . In the case of a semiclassical state constructed on a
Lagrangian torus, the fine structure in the Wigner function results from the interference of a
finite number of locally plane waves. The fine structure of ergodic chaotic Wigner functions
has not yet been explored.
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It should be noted that our general description is in no way limited to stationary states.
The curves and surfaces which we have mainly treated may be evolving classically, while the
corresponding quantum system also evolves. We have not treated this dynamics here, but our
description is valid for any snapshot. Even for the evolution of a localized wave packet in a
chaotic system, it is possible to advance that long scale quantum correlations develop as the
classical packet spreads over the energy shell.

This study of the coherence properties of pure states suggests that it is not always profitable
to transform back to the centre phase space of the Wigner function from the phase space of
chords, since it is here that the full structure of chord conjugacies is manifest. Furthermore,
there is a decided advantage to allowing the collapse of all classical information onto the
neighbourhood of ξ = 0. All that extends out in the chord phase space are signs of quantum
coherence and these are structures that are lost in the nonunitary evolution that results from
tracing out the interaction with an uncontrollable environment.
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Appendix A. Conjugate phase spaces

The points in phase space for a system with L degrees of freedom are here denoted simply
by x = (p, q) = (p1, . . . , pL, q1, . . . , qL). In the classical limit, h̄ → 0, we may associate
a quantum state with such a phase point, but we need pairs of points (x−, x+) to describe
operators Â, such as 〈q+|Â|q−〉, or 〈p+|Â|p−〉. In both these cases, we only use, in fact, half
of the phase space variables, as consistent with the uncertainty principle.

Another alternative is to use either the centre

X = (P,Q) = (x+ + x−)/2 (A.1)

or the chord

ξ = (
ξp, ξq

) = x+ − x−. (A.2)

As shown in [12, 16] we may then identify the argument in the Weyl symbol of Â, A(X), with
the centre (A.1). In the same way, the argument in the chord symbol A(ξ) corresponds to the
chord (A.2). In the case of a unitary transformation, corresponding classically to a trajectory,
we identify ξ as the chord corresponding to the arc {x(τ), 0 � τ � t} joining x− = x(0) and
x+ = x(t). Of course, X is the reflection centre for this pair of phase space points [12].

Canonical transformations in phase space are generated implicitly by the centre action,
i.e., the generating function S(X) [12], such that

Jξ = ∂S

∂X
, (A.3)

where

J =
(

0 −11
11 0

)
, (A.4)

or by the chord action S(ξ), such that

−JX = ∂S

∂ξ
. (A.5)
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Comparing with more familiar generating functions, e.g., S(q−, q+),

∂S

∂q+
= p+,

∂S

∂q−
= p−, (A.6)

it follows that the conjugate variable to X should really be Jξ rather than the chord itself.
However, this lacks a clear geometrical interpretation in terms of x±, so it is better to keep ξ ,
but replace all scalar products by skew products. Hence, in all Fourier transforms we use

(J ξ) · X = ξ ∧ X = ξp · Q − ξq · P =
L∑

�=1

(
ξp�

Q� − ξq�
P�

)
. (A.7)

Appendix B. Parity eigenstates

Any state |ψ〉 in Hilbert space can be decomposed into components of even or odd parity
(eigenvalue +1, or −1) of any of the reflection operators R̂X. Indeed these projectors were
presented by Royer [11] as

P̂ X
± = 1

2 (1 ± πh̄R̂X), (B.1)

so that the parity decomposition of an arbitrary density operator, ρ̂, is

ρ̂X
± = P̂ X

± ρ̂P̂ X
±

tr ρ̂P̂ X±
. (B.2)

Since these reduced density operators commute with the reflection operator, the Wigner
function corresponding to R̂Xρ̂ is

W±
X (X′) = 2Ltr R̂X′R̂Xρ̂X

± = ±2Ltr R̂X′ ρ̂X
± = 2L e2iX′∧X/h̄tr T̂2(X′−X)ρ̂

X
±, (B.3)

where we used the general group relations between translations and reflections [12]. Thus,
shifting the origin to the centre of symmetry, we obtain

W±
0 (X) = ±2Lχ±

0 (−2X). (B.4)

In the case that ρ̂X
± is the projection of an arbitrary ρ̂ according to (B.2), then the general form

of the projected Wigner function given by [26] is transported to the chord function as

χ±
0 (ξ) = χ(ξ) + χ(−ξ) ± 2W(ξ/2)

4 [1 ± πh̄W(0)]
. (B.5)

Evidently, all chord functions with pure parity are real. The reciprocal is also true, because
the imaginary part of χ(ξ) cancels if and only if

tr (T̂−ξ ρ̂) = χ(ξ) = χ(ξ)∗ = χ(−ξ) = tr T̂ξ ρ̂. (B.6)

But, using the group properties of translations and reflections,

tr T̂−ξ ρ̂ = tr R̂0T̂ξ R̂0ρ̂ = tr T̂ξ R̂0ρ̂R̂0, (B.7)

which is only equal to (B.6) for all ξ if [ρ̂, R̂0] = 0.
A mixture of pure states, each of which has definite parity, commutes with R̂0 and hence

produces a real chord function. The imaginary part of the chord function is related to the
off-diagonal parity representation of the density matrix, i.e., for an orthogonal basis of odd
and even states, this is the block of the density matrix coupling the different parities.
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